
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 13-2083990

Accelerating Graph Algorithms Using Graphics Processors: Shortest 
Paths for Planar Graphs
Hristo Djidjev,  
Sunil Thulasidasan, CCS-3; 
Guillaume Chapuis,  
Rumen Andonov, University 
of Rennes, France

We present a new approach to solving the shortest-path problem for planar graphs. This approach 
exploits the massive on-chip parallelism available in today’s Graphics Processing Units (GPU). By 
using the properties of planarity, we apply a divide-and-conquer approach that enables us to exploit the 
hundreds of arithmetic units of the GPU simultaneously, resulting in more than an order of magnitude 
speed-up over the corresponding CPU version. This is part of our larger algorithmic work on finding 
efficient ways to parallelize unstructured problems, such as those found in complex networks and data 
mining, on highly parallel processors.

The shortest-path problem is a fundamental computer science problem 
with applications in diverse areas such as transportation, robotics, 

network routing, and Very Large Scale Integration (VLSI) design. The 
problem is to find paths of minimum weight between pairs of nodes in 
edge-weighted graphs, where the weight of a path p is defined as the sum 
of the weights of all edges of p. The distance between two nodes v and w 
is defined as the minimum cost of a path between v and w.

There are two basic versions of the shortest-path problem. In the single-
source shortest-path (SSSP) version the goal is to find, given a source 
node s, all distances between s and the other nodes of the graph. In the 

all-pairs shortest-path (APSP) 
version, the goal is to compute 
the distances between all pairs of 
nodes of the graph. While the 
SSSP problem can be solved very 
efficiently in nearly linear time by 
using Dijkstra’s algorithm [1], the 
APSP problem is much harder 
computationally. The fastest 
algorithm for general graphs is 
Floyd-Warshall’s algorithm [1] 
that runs in O(n3) time and works 
for graphs with arbitrary 
(including negative) weights. That 
algorithm has a relatively regular 

structure that allows parallel implementations with high speedup. 
However, the cubic complexity of the algorithm makes it inapplicable to 
very large graphs.

As part of our work on solving unstructured graph-based problems on 
fine-grained parallel architectures, we describe a new algorithm for the 

APSP problem for planar graphs based on the Floyd-Warshall algorithm. 
The complexity of our algorithm with respect to the number of nodes is 
close to quadratic, while its structure is regular enough to allow for an 
efficient parallel implementation that enables us to exploit the massive 
on-chip parallelism of GPUs. 

Our algorithm uses the Floyd-Warshall algorithm as a sub-routine, 
which successively re-evaluates the path between nodes i and j, by 
considering the path through vertex k, for all possible k. The structure of 
the algorithm is similar to the one of matrix multiplication, that makes 
very regular efficient parallel implementation possible. Our algorithm 
decomposes the graph into p parts, solves the APSP problem for the 
sub-graph induced by each part (in parallel, if more than one processor 
is available), and then uses that information to compute the distances 
between pairs of arbitrary nodes. The details of the algorithm are given 
in [2].

The above algorithm was implemented on a GPU using CUDA, nVIDIA’s 
parallel programming framework for the GPU. Modern GPUs are efficient 
at manipulating structured data like matrices, and their highly parallel 
architecture (a GPU trades the complicated cache and control logic in 
a CPU for a large number–often hundreds–of arithmetic units) makes 
them ideally suited for processing large blocks of data simultaneously 
(referred to as the SIMD–Single Instruction Multiple Data–paradigm). 
In order to comply with the GPU paradigm, we define a computational 
kernel that implements Floyd-Warshall’s algorithm and computes the 
APSP over a sub-matrix of the initial matrix. We then define computation 
grids, where blocks correspond to sub-matrices that can be computed 
simultaneously.

Phase 1 of the algorithm consists of computing APSP in self-dependent 
(in terms of data dependencies) diagonal sub-matrices, using a 

Fig. 1. Block-level data parallelism 
and data dependencies in the adjacency 
matrix for phase 1 and phase 3 of the 
algorithm. Sub-matrices for which 
computations are required are shown in 
red. Arrows indicate data dependencies.



INFORMATION 
SCIENCE AND 
TECHNOLOGY

www.lanl.gov/orgs/adtsc/publications.php 91

vertices. These graphs were generated using the LEDA 
graph generator [3]. Figure 2 shows the GPU versus CPU 
speed-up comparison for progressively larger graphs, with 
the GPU being up to 14 times faster than the GPU for larger 
graphs (32-k nodes). For the largest instance, the cost 
adjacency matrix requires about 4.2 GB of RAM. Instances 
larger than about 38,000 vertices would require more RAM 
than currently available on the GPU. One way around the 
memory size problem is to exploit the spatially constrained 
nature of paths in real-world graphs that will allow us to 
consider only a relatively small subset of the original graph 
[4]. We are also currently extending this work to tackle 
larger graph instances by using multi-GPU clusters.

block-parallel version of the Floyd-Warshall algorithm. 
Computations for these diagonal sub-matrices can be run in 
parallel in different GPU blocks. Phase 2 of the algorithm 
consists of computing APSP on a sub-graph of the initial 
graph solely comprised of boundary vertices. For this 
purpose, we implemented a GPU version of the blocked 
APSP algorithm described in [5], a variant of the Floyd-
Warshall algorithm where computations are divided into 
groups that can be easily be mapped to GPU blocks. Phase 3 
of the algorithm consists of computing APSP in the 
remaining non-diagonal sub-matrices, using the same 
parallel Floyd-Warshall algorithm. Since Phases 1 and 3 use 
the same data patterns we illustrate their data dependencies 
in Fig. 1.

In order to test the efficiency of the algorithm, we compare 
two implementations of the partitioned APSP algorithm: (1) 
a single core CPU implementation of the partitioned all-pairs 
shortest-path algorithm (referred to as CPU version), and 
(2) a single GPU implementation of the partitioned all-pairs 
shortest-path algorithm (later referred to as GPU version).

The CPU version runs on an Intel(R) Xeon(R) CPU X5675 at 
3.07GHz. The GPU version runs on an nVidia Tesla m2090 
consisting of 512 cores at 1.3 GHz. The benchmark consists 
of random cost adjacency matrices, representing planar 
graphs with sizes ranging from 1024 vertices to 32,768 

For more information contact Sunil Thulasidasan at 
sunil@lanl.gov.

[1] Cormen, T.H. et al., 
Introduction to Algorithms, 
1st edition, MIT Press and 
McGraw-Hill, ISBN 0-262-
03141-8 (1990).

[2] Djidjev, H.N. et al., “On 
Solving Shortest Path Problems 
for Planar Graphs using 
Graphics Processors,” LA-UR- 
12-25700 (2012).

[3] Mehlhorn, K. et al., LEDA: 
A Platform for Combinatorial 
and Geometric Computing, 
Cambridge University Press, 
(1999).

[4] Thulasidasan, S., “Heuristic 
Acceleration of Routing in 
Transportation Simulations 
Using GPUs,” Proceedings 
4th International Conference 
on Simulation Tools and 
Technologies (SimuTools) 
(2011).

[5] Venkatraman,G. et al.,  J 
Exp Algorithmics, 8, 2.2 
(2003).

Funding Acknowledgments
LANL, Laboratory Directed Research and Development Program

Fig. 2. Run times (left) with 
respect to input matrix size or the 
CPU and GPU versions.  
First four data points (right) 
zoomed in.


